‎finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

نویسندگان

mehdi dehghan

masoud hajarian

چکیده

a matrix $pintextmd{c}^{ntimes n}$ is called a generalized reflection matrix if $p^{h}=p$ and $p^{2}=i$‎. ‎an $ntimes n$‎ ‎complex matrix $a$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $p$ if $a=pap$ ($a=-pap$)‎. ‎in this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $axb=c$ and $dxe=f$ over reflexive and anti-reflexive matrices‎. ‎the convergence of the iterative methods is also proposed‎. ‎finally‎, ‎a numerical example is given to show the efficiency of the presented results‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‎Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$‎. ‎An $ntimes n$‎ ‎complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$)‎. ‎In this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...

متن کامل

Gradient Based Iterative Algorithm for Solving the Generalized Coupled Sylvester-transpose and Conjugate Matrix Equations over Reflexive (anti-reflexive) Matrices

Linear matrix equations play an important role in many areas, such as control theory, system theory, stability theory and some other fields of pure and applied mathematics. In the present paper, we consider the generalized coupled Sylvestertranspose and conjugate matrix equations Tν(X) = Fν , ν = 1, 2, . . . , N, where X = (X1, X2, . . . , Xp) is a group of unknown matrices and for ν = 1, 2, . ...

متن کامل

Minimization Problems for Generalized Reflexive and Generalized Anti-Reflexive Matrices

Let R ∈ Cm×m and S ∈ Cn×n be nontrivial unitary involutions, i.e., R = R = R−1 = ±Im and S = S = S−1 = ±In. A ∈ Cm×n is said to be a generalized reflexive (anti-reflexive) matrix if RAS = A (RAS = −A). Let ρ be the set of m × n generalized reflexive (anti-reflexive) matrices. Given X ∈ Cn×p, Z ∈ Cm×p, Y ∈ Cm×q and W ∈ Cn×q, we characterize the matrices A in ρ that minimize ‖AX−Z‖2+‖Y HA−WH‖2, a...

متن کامل

On the modified iterative methods for $M$-matrix linear systems

This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...

متن کامل

Anti-reflexive Solutions for a Class of Matrix Equations

In this paper, the generalized anti-reflexive solution for matrix equations (BX = C , XD = E), which arise in left and right inverse eigenpairs problem, is considered. With the special properties of generalized anti-reflexive matrices, the necessary and sufficient conditions for the solvability and a general expression of the solution are obtained. Furthermore, the related optimal approximation...

متن کامل

A Finite Iterative Algorithm for Hermitian Reflexive and Skew-hermitian Solution Groups of the General Coupled Linear Matrix Equations

In this paper, we focus on the following coupled linear matrix equations Mi(X,Y ) = Mi1(X) +Mi2(Y ) = Li, with

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

ناشر: iranian mathematical society (ims)

ISSN 1017-060X

دوره 40

شماره 2 2014

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023